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ABSTRACT: A Pd-catalyzed regioselective C—H bond
carbonylation of N-alkyl anilines for the synthesis of isatoic
anhydrides has been developed. The key Pd-catalyst
intermediate has been isolated and characterized. This
novel Pd-catalyzed carbonylation reaction tolerates a wide
range of functional groups and is a reliable method for the
rapid elaboration of readily available N-alkyl anilines into a
variety of substituted isatoic anhydrides under mild
conditions.

arbonylation reactions with CO have been and continue to

be a very active area of research." Since the pioneering work
of Heck in 1974,> carbonylations of aryl halides and
pseudohalides with CO have become one of the most common
methods for the addition of a carbonyl group to organic
molecules.” In recent decades, much progress has been made in
C—H bond activation and functionalization.* However, C—H
carbonylation has remained largely undeveloped.” A break-
through in this area was made with the Pd-catalyzed carbon-
ylation of aromatic C—H bonds by Fujiwara et al, but the
reaction lacks re§1oselect1v1ty and requires a large excess of the
arene as solvent.

Recently, transition-metal-catalyzed chelation-assisted carbon-
ylation of C—H bonds for the synthesis of ketones, acids, amides,
and esters has been developed by Murai,” Yu,® Chatani,” Orito,"°
Lloyd-Jones and Booker-Milburn,'' our,'* and other
groups.”>™" Despite these advances, there is no efficient
protocol for C—H bond carbonylation to synthesize anhydrides
directly.® As a class of powerful building blocks in organic
chemistry, the synthesis of anhydrides by C—H bond carbon-
ylation is high desirable.

Directing groups which could assist the ortho electrophilic
metalation of C—H bond are important in C—H bond
carbonylations.”® A small number of functional groups, such as
carboxy, amide, urea, pyridin-2-ylmethylamine, and azahetero-
cycles, have been explored for direct C—H bond carbonylation.
The search for new directing groups which are synthetically
versatile is still a challenging task. We have found that
synthetically versatile secondary anilines can be used for ortho
C—H bond carbonylation. Here, we report a Pd-catalyzed N-
alkyl amino directed carbonylation of C—H bonds for the
synthesis of isatoic anhydrides.

We began our study with the Pd-catalyzed carbonylation of
anilines using N,N-dimethylamino as the directing group. The
carbonylation product 2’ was formed along with isatoic
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anhydride 2a, in 4% and 5% yields respectively, with 72%
recovery of N,N-dimethylaniline (eq 1). Importantly, the
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carbonylation of the C—H bond of aniline was observed in
both products. Isatoic anhydrldes are valuable chemicals and
versatile building blocks.*' Present methods for the synthesis of
isatoic anhydrides involve cychzatlon of anthranilic acid by highly
toxic chloroformate or triphosgene.”> The C—H carbonylation of
anilines for the synthesis of isastoic anhydrides would be an ideal
and environmentally friendly approach.

Since demethylation is required for N, ,N-dimethylaniline,23 we
moved to N-methylaniline. The yield of N-methyl isatoic
anhydride 2a improved dramatically to 40% (Table 1 entry 1).
Screening various oxidants, such as AgOAc, CuCl,, BQ, and
Oxone, revealed Cu(OAc), to be the most effective for the

Table 1. Optimization of Conditions for the Pd-Catalyzed
Carbonylation of N-Methyl Aniline®

@:NH Pd(OAc),, Cu(OAc),
H

additive, CO (1 atm)

(0]
1a 2a
entry additive solvent T (°C) yield (%) J
1 MeCN 100 40
2 Nal MeCN 100 71
3 Bu,NI MeCN 100 76
4 I, MeCN 100 60
S K1 MeCN 100 80
6 KI DMSO 100 68
7 KI DMF 100 65
8 KI toluene 100 20
9 K1 1,4-dioxane 100 37
10 KI MeCN 60 85
11°¢ KI MeCN 60 68

“Reaction conditions: 1a (0.2 mmol), Pd(OAc), (S mol %), oxidant
(2.2 equiv), MI (0.2 equiv), CO (1 atm), solvent (2 mL). “Isolated
yield. “Cu(OAc), (0.5 equiv), CO/O, (5:1) 1 atm.
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Table 2. Scope of Pd-Catalyzed Carbonylation of N-Methyl Anilines for the Synthesis of Isatoic Anhydrides®
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“Reaction conditions: aniline 1 (0.2 mmol), Pd(OAc), (S mol %), Cu(OAc), (2.2 equiv), KI (0.2 equiv), CH;CN (2 mL), CO (1 atm), 60 °C.
bIsolated yields. “At room temperature. “Pivalic acid (1.0 equiv) was added. °CO/0, (2:1) (3 atm).

transformation (see Supporting Information (SI), Table S1). To
further improve the reaction outcome, iodide compounds which
have been shown to improve the efficiency of Pd-catalyzed
carbonylations were also screened (Table 1, entries 2-5).12b2
KI was found to be the most effective and gave the desired
product 2a in 80% yield (Table 1, entry 5).>* Other solvents such
as DMSO, DMF, toluene, and 1,4-dioxane are inferior to
CH,CN in the reaction (Table 1, entries 6—9). Finally, the
reaction temperature was also varied, and 60 °C gave the best
yield (see SI Table S1). It should be noted that the isatoic
anhydride 2a could also be obtained in 68% yield using only a
catalytic amount of Cu(OAc), (50 mol %) under 1 atm of CO/
O, (5:1) (Table 1, entry 11).

With the optimized reaction conditions established, the scope
of the reaction was investigated (Table 2). This new carbon-
ylation reaction displayed high functional group tolerance and
proved to be a quite general methodology. Anilines with methyl,
methoxyl, fluoro, and sensitive functional groups such as chloro,
bromo, and formyl (aldehyde) and strong electron-withdrawing
groups such as nitro, acetyl, and ester groups all gave the
corresponding substituted isatoic anhydrides in good to high

yields. Generally, the electron-rich substrates showed more
reactivity, which is consistent with an electrophilic palladation
mechanism.*'" Dimethyl, methoxyl, or dimethoxyl substituted
anilines were converted to corresponding isatoic anhydrides in
good yields at rt (Table 1, entries 4—6). When pivalic acid was
used as an additive, isatoic anhydrides bearing electron-
withdrawing groups were afforded in high yields under 3 atm
of CO/0, (2:1) (Table 1, entries 7—14). The steric effect was
observed in the transformation. Ortho-substituted anilines gave
low yields of the corresponding isatoic anhydrides.®™"'* But the
steric effect improves the regioselectivity of the carbonylation of
meta-substituted anilines, in which case only less sterically
hindered products were obtained (Table 2, entries 3—4, 6, 10—
11). Similarly, the isatoic anhydride 20 from the carbonylation of
2-naphthylamine 1o was observed as the only product in 68%
yield (Table 1, entry 15). Although the indoline 1p was inert to
the transformation, the carbonylation of tetrahydroquinoline 1q
proceeded smoothly to give the tricyclic isatoic anhydride in 75%
yield (Table 1, entries 16—17).

Furthermore, different alkyl substituents on the anilines were
also investigated (Table 3). N-Ethyl, propyl, or cyclohexyl
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Table 3. Pd-Catalyzed Carbonylation of N-Alkyl Anilines”
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“Reaction conditions: aniline 1 (0.2 mmol), Pd(OAc), (5 mol %),
Cu(OAc)2 (22 equiv), KI (0.2 equiv), CH;CN (2 mL), CO (1 atm),
60 °C. “Isolated yields.

substituted anilines could be used and provided the correspond-
ing carbonylation products in moderate to good yields (Table 3,
entries 1—3). Even N-benzylaniline 1u gave the isatoic anhydride
2u as the product in 72% yield (eq 2).

[ PA{OAC), KI, Cu(OAC): E i
NH \{// (2!
©/ GO (1 atm), CH3CN, 60 °C I

1u

?2 % trace

To demonstrate the synthetic utility of this reaction, the isatoic
anhydride 2a which was synthesized by catalytic amounts of
Pd(OAc),/Cu(OAc), under a CO/O, atmosphere was easily
transformed into N-methylanthranilic acid 3, ethyl 2-
(methylamino)benzoate 4, or 2-(methylamino)benzamide § in
high yields (Scheme 1).

To gain insight into the mechanism of the reaction, a
stoichiometric reaction of Pd(OAc), with N-methylaniline was

Scheme 1. Subsequent Decarboxylative Transformations
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conducted under a CO atmosphere in the absence of Cu(OAc),
(Scheme 2). A palladium complex whose structure is consistent

Scheme 2. Formation and Characterization of Palladium
Intermediate

Pd(OAc), HO Cu(OAc),
llq (1.0 equiv) Sy-pd-C0 (2.2 equiv) !L A
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with A by '"H NMR and mass spectrometry analysis was obtained
in 60% yield.*® This complex is poorly soluble in common
organic solvents. To confirm the structure of the palladium
complex A, it was converted to the more soluble PPh,
coordinated palladium complexes B and C. The structures of B
and C were then characterized by X-ray crystallography, thus
conﬁrmm_; A is a CO coordinated palladium hydroxide
dimer.” Treating the palladium dimer A with Cu(OAc),
(2.2 equiv) in the presence of KI (1.0 equiv) in CH;CN under
a CO atmosphere gave the isatoic anhydride 2a in 78% yield.
Therefore, the palladium dimer A should be a key intermediate in
the reaction.

Therefore, a tentative mechanism for this carbonylation is
proposed in Scheme 3. Electrophilic palladation of the C—H

Scheme 3. Tentative Mechanism of the Reaction
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bond of N-methyl aniline 1 by Pd(OAc), under a CO
atmosphere forms a dimeric palladium intermediate A. Insertion
of CO to intermediate A followed by a reductive elimination
reaction gives N-methylanthranilic acid C** and Pd(0). Pd(0)
was assumed to be oxidized by Cu(OAc), to generate the
Pd(OAc), catalyst. Then, metathesis of N-methylanthranilic acid
C and Pd(OAc), produces the intermediate D. Coordination
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and insertion of CO to D affords intermediate E. Nucleophilic
attack of the amino group on the acylpalladium moiety gives the
isatoic anhydride 2 and Pd(0).**** Finally, Pd(0) was reoxidized
by Cu(OAc), to regenerate the Pd(OAc), catalyst.

In summary, we have developed a novel palladium-catalyzed
C—H bond carbonylation of N-alkyl anilines for the synthesis of
isatoic anhydrides. The mechanism was investigated, and a key
intermediate was isolated and characterized. This novel
palladium-catalyzed carbonylation reaction tolerates a wide
range of functional groups and is a reliable method for the
rapid elaboration of readily available N-alkyl anilines into a
variety of substituted isatoic anhydrides under mild conditions.
Further scope and mechanistic studies of the reaction are
underway in our laboratory and will be reported in due course.
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